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ABSTRACT

QR is the standard method for finding all the eigenvalues of a symmetric tridiagonal matrix. It produces a

sequence of similar tridiagonals. It is well known that the QR transformation from T to f is backward

stable. That means that the computed f is exactly orthogonally similar to a matrix close to T. It is also

known that the algorithm sometimes exhibits forward instability. That means that the computed f is not

close to the exact T.

For the purpose of computing eigenvalues the property of backward stability is all that one requires. How-

ever the QR transformation has other uses and there forward stability is wanted.

This report analyzes the forward instability and shows that it occurs only when the shift causes premature

deflation. We show that forward stability is governed by the behavior, in exact arithmetic, of a pair of vari-

ables and we establish tight upper and lower bounds on their derivatives with respect to change in the shift

parameter. , -- 'r
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C
/ 1. Summary and Notation

Li Introduction

This study is in the area of matrix eigenvalue computations.

% theHousehol r-QR algorithm has -become the standard method for diagonalizing a symmetric
matrix. First the matrix is reduced to tridiagonal form T by a technique introduced by A. Householder in
1958. Next the tridiagonal matrix T is dagonalize byvsucsjve applications of the QR transformation
with shifts. Moreover it is well known4{ e "i , . that the QR transformation is back-
ward stable. That means that the computed transform is exactly orthogonally similar to a matrix close to the
old one. It is also known to the!LXp (VXTse tf-Mon,795& 1, [ Golub & Kahan I and [ Stewart, 1970 1 )

' -t -ansformation sometimes exhibits forward instability. That means that the computed output is
far from the result obtained with exact arithmetic. For the purpose of computing eigenvalues and eigenvec-
tos the property of backward stability is all that one requires. However the QR transformation has other
uses and in some cases forward stability is desirable.

"-is eport analyzes the forward instability of QR and shows that it occurs only when the shift is
very close to eigenvalues with a special property.-for some matrices there may be no eigenvalues with this
property and in such cases the algorithm is forWard stable for any value of the shift. The study was
prompted by the discovery that the dominant factck determining instability is the sensitivity of several key
quantities to small changes in the shift parameter. This sensitivity dominates the effect of perturbation in all
the other variables. I

The technical contributions of this study are: I j

1) The observation that instability is equivalent to premature deflation that occurs when the
shift is almost an eigenvalue of several consecutive submatrices;

2) Establishing the central role of a certain pair of variables associated with each plane rota-
tion used in the algorithm. It is the evolution of the norm of this 2-vector that governs the
accuracy of the computed angles.

3) Bounds on the derivatives of the cosines of the rotation angles and other key quantities.

4) Upper and lower bounds on the last components of normalized eigenvectors in terms of
eigenvalues.

1.2 Organization of this study

This first section gives the summary of this study. Along with it, the notation conventions to be used
in the discussions is presented. fDTIC,

In section 2, the QR transformation is defined and several examples are exhibited to show that som4 cOPy
times the QR transformation on T is forward stable and sometimes it is not. Also in section 2, several,- /
needed spectral properties of T are described. An useful result is Theorem 2.3 that gives upper and lower
bounds on the last element of a normalized eigenvector of T.

In section 3, the implementation of the QR transformation on T is discussed. In the process, the
important intermediate quantities are introduced along with the relations among them. For

In section 4, these quantities are analyzed in terms of the shift . The main results of this effort are
1) the derivatives of xt, ck~1 ( to be defined in (3.1.2)) will attain their extrema at the eigenvalues of T; 2) t
if some eigenvalue X() of Tk is very close to some eigenvalue )(-) of T.., the absolute values of
d nkIda, dckIda for a in the vicinity of this special V) can be large.

In section 5, the intermediate quantities produced in finite precision arithmetic by a particular QR
implementation are formulated into a convenient matrix-vector form and the influence of the roundoff
errors is represented by a tridiagonal error matrix. The important usage of this error matrix is in the Per-
turbed Commutative Law which is used to explain the forward instability of TQR.

Availability Codes
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1.3 Notation

Throughout this work we will use T to denote the real n x n symmetric tridiagonal matrix. In general,
upper case Roman letters will denote matrices, lower case Bold letters will denote vectors and lower case
Roman letters will denote scalars. Upper case Greek letters are used for special matrices ( usually diagonal
), lower case Greek letters are also scalars.

The matrix It denotes the kxk identity matrix. The matrix Tt denotes the k-th leading principal
submatrix of T. The norm I. II is the Euclidean norm. The transpose operation is denoted by (e.g. M' is
read M transpose).

1.4 (More technical ) Summary

The actual algorithm used to implement the QR transformation employs a sequence of plane rota-
tions in planes (1, 2), (2,3), (3,4), ... , (n-, n ) that change T. into T. by chasing a certain bulge in the
widiagonal form down the matrix and off the end. The proof that this process is equivalent to the formal
definition of the QR transform ( namely (i) T - c I = QR; (ii) f = RQ + c u, ) depends strongly on the
unreduced property ( to be defined in section 2.2 ) of T. In a finite precision environment we must antici-
pate a divergence of these two processes when any subdiagonal elements f

3
A (2 < k < n ) are small

enough, except for the last one. In other words it is not surprising that small Pt, (k < n ) causes forward
instability in QR.

Nevertheless this possible closeness to reducibility is not the only cause of instability. The purpose of
this study is to elucidate exactly how forward instability can occur both with and without small Pt,
(k <n ).

Forward instability, if it occurs, is quite dramatic. The cosines of the rotation angles, c 1, c2 ... ,-1
exhibit the following behavior. Up to some k <n-I the computed and the exact ci have the same
exponents which eventually diminish to log (roundoff unit )/2. For i : k the true I c I continues to
decrease while the computed I 2 I increases in such a way that the products I ci Fi I = 0 (E). This holds
until Ici I <c. As I ci I diminishes even further, I Fi I stays close to I unless Pi suddenly drops. An iso-
lated vanishing of c (i <k ) does no harm.

One result of our study is that forward instability is always associated with "premature deflation". In
the scenario given in the previous paragraph it happens that after rotation k the elements (k-1, k ),
(k, k-1 ), (k, k+1 ), (k+1, k ) are all on the order of '4e II T II. The shift appears in position (k, k ) and is
correct to working precision. If row k and column k are deleted from the new matrix to obtain t(k) then the
eigenvalues of f7k) will be the remaining eigenvalues of T. to within working accuracy. If the shift is a
well isolated eigenvalue of T. then its eigenvector can be constructed from the rotation angles up to k.

The occurrence of forward instability is not connected with the presence of clusters of close-
eigenvalues in T.. It is caused by the shift being an eigenvalue of Tk-1 and T ( to working accuracy ). It so
happens that when this occurs the shift will be an eigenvalue of all the principal submatrices T-1, TA, TA+I,

., ( to working accuracy ).
We have described instability in terms of the cosines F because they are more familiar. However a

better indicator of stability is (i + c8
2 I32+ )1/2 where 7; is one of the variables that appears in TQR. See

section 5 for more details.

1.5 Application to the Lanczos Algorithm
In general the algorithm TQR ( tridiagonal QR ) is forward stable for all choice of shifts. However

there is an important application where instability is endemic and it was the gradual realization of this
uncomfortable fact that led to our study.

The Lanczos iteration produces a symmetric tridiagonal matrix to which a new row and column are
added at each step. At the end of step k the algorithm has produced tridiagonal T and an extra number
PA+1 . Tk represents the projection of some given linear operator A on a special k-dimensional subspace.
These growing tridiagonals are special because, as k increases, some eigenvalues stabilize. In other words
an eigenvalue of Tk appears to be equal ( to working precision ) to an eigenvalue of Tk+ and to an eigen-
value of Tk 2 , and so on. These stabilized values are eigenvalues of the linear operator A on R". In an
implementation of the Lanczos algorithm it is convenient to get rid of these converged eigenvalues by
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deflating them from T,. At first sight this appears to be impossible because at step k ( k < n ) the matrix
T is not fully known. However this deflation is possible and even occurs naturally ( in exact arithmetic )
when the QR algorithm is applied to Tk.I with the correct shift. The unknown component in position
(k+1, k+l ) is not altered when the QR transformation is halted at step k. It is only necessary to delete
row and column k.

What happened to us was that we did not always know the correct value k. When the QR transfor-
mation was forced to continue beyond the right place then the results were terrible. As a resuilt, the
deflation by QR failed and the resulting tridiagonals were wrong. Of course deflation had occurred earlier
but we did not look for it. The process had encounted forward instability. In the spirit of knowing your
enemy this investigation was launched.

2. Background Information

This section covers the definition of the QR transformation and its relation to eigenvalue deflation
and eigenvector calculation for a symmetric tridiagonal matrix T. The examples in section 2.3 show that
the QR transformation on T can sometimes be violently unstable in the forward sense. For easy reference,
several needed spectral properties of T are collected into section 2.4 from [ Parlett, chap.7 1. Theorem 2.3
gives upper and lower bounds on the bottom element of a normalized eigenvector.

2.1 The QR transformation

This well established procedure is described in several books; e.g. [ Wilkinson, chap.8 ], [Stewart,
chap.7 ], [ Parlett, chap.8 ], [ Golub & Van Loan, chap.7]. Here we will reproduce only what we need of
the standard results. Our notation follows [ Parlett, chap.8].

For any square complex matrix A and any scalar { a I (called the shift ) that excludes A's eigen-
values, the associated QR transformation A -+ A is defined as follows:

i) let A - Y I = QR, the unique unitary upper triangular decomposition with the diagonal ele-
ments of R being positive.

ii) define A =RQ +I =Q*AQ.

One important property of the QR transformation is that both the upper Hessenberg form
(A = (ai,) with a3j = 0 if i >j+1 ) and the Hermitian form ( A = (aij) with i = ai ) are preserved. Our
concern here is with real symmetric tridiagonal matrices, A = T, and this form is preserved in the QR
transformation since T is both upper Hessenberg and Hermitian. Only real shifts are considered in our
investigations.

2.2 Eigenvalue deflation and eigenvector calculation

A well known result ( see [ Wilkinson, pp 469-471 ]) connects QR with eigenvalue deflation and
eigenvector computation.

Definition 2.1: A symmetric tridiagonal matrix T is called unreduced if its subdiagonal elements are
nonzero.

Remark: When T is unreduced the QR transformation is well defined for all shifts a because the first
n-1 columns of T - al are linear independent for all a.

Lemma 2.1: ( QR and deflation)

Let T be unreduced and f be the QR transform of T with shift a, i.e.
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= QTQ = RQ +aI (2.2.1)

where T - of = QR. If a = X, an eigenvalue ofT, then

(1) last row ofT has theform (0,.... 0, X);

(2) last column of Q , namely q., satisfies

Tqx = qn (2.2.2)

Here Q is orthogonal and R is upper triangular.
Since t = f Q)X where T has order one less than T, we say that X has been deflated from T in one

sweep of QR transformation. It is clear that the spectrum of T consists of the remaining eigenvalues of T.
Also from Lemma 2.1, we see that when X is deflated from T, its corresponding eigenvector is revealed in
Q, namely its last column q,.

2.3 Some examples

In this subsection, we show, by example, that Lemma 2.1 is not a reliable guide to results in finite
precision computation. Example 2.1 will show a successful deflation and Example 2.2 will show a failure.
Example 2.3 will exhibit the success of deflation on the failed case in Example 2.2 after two sweeps of
QR have been applied. Example 2.4 is an interesting case of success despite having a shift o that is an
exact eigenvalue of several of T's leading principal submatrices.

The data given in the following matrices have been multiplied by 04 for the purpose of better
presentation. The transformed T here is generated by the numerical implementation of QR called TQR,
which will be described in section 3.2.

Example 2.1: ( the successful case )

6683.3333 14899.672
14899.672 33336.632 34.640987

34.40987 20.028014 11.832164
T6  11.832164 20.001858 10.141851 (2.3.1)

10.141851 20.002287 7.5592896

L 7.5592896 20.002859

The eigenvalues of this matrix are:

X, =O, X22 =10, X3=20, X4 =30, X5 =40, )=40000.

The shift is X, = 0. The matrix f after one QR sweep is:

39999.925 54.726511
54.726511 33.404823 8.3017268

8.3017268 24.730751 8.8065994
2 6  8.8065994 21.646903 7.2175779

7.2175779 20.292461 -7.943d-12
-7.943d-12 -2.344d-15

The last row of t6 is negligible as we expected. For comparision, here is t6 computed by a method
other than TQR.
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39999.925 54.726511
54.726511 33.404823 8.3017268

8.3017268 24.730751 8.8065994
8.8065994 21.646903 7.2175779

7.2175779 20.292461 -1.113d-14
-1.113d-14 9.520d-13

The matrix elements of these two transformed T 6 are almost identical except the bottom ones. How-
ever, they are negligible.

Example 2.2: (The failed case)

The matrix T is the same as the one hi Example 2.1. The shift is ) 6. The matrix f after one QR
sweep is:

19.989995 14.142133

14.142133 20.003002 11.832160
11.832160 20.001858 10.141851

10.141851 20.002287 7.5593584 (2.3.2)
7.5593584 20.730517 -170.56153

-170.56153 39999.272

The last subdiagonal element is not negligible. For comparison, here is T6 computed by a method
other than TQR.

19.989995 14.142133
14.142133 20.003002 11.832160

11.832160 20.001858 10.141851
f6 10.141851 20.002287 7.5592896 (2.3.3)

7.5592896 20.002859 -1.608d-13
-1.608d-13 40000.000

Examples 2.1, 2.2 have shown that the transformation with o = X, is stable and the one with a = X6

is unstable. Examination of the eigenvalues of the leading principal submatrices of T 6 ( see table 23.1 in
Appendix A ) reveals that X6 matched the biggest eigenvalues of T3, T4, and T5 to almost full working pre-
cision. On the other hand X, is not close to any eigenvalues of T 3, T4 and Ts.

Example 2.3:

The tridiagonal matrix T6 is the same as that in Example 2.2. We applied the QR transformation
once more to the" T1). exhibited in Example 2.2 keeping the same shift = 40000. The resulting
matrix is:

19.979990 14.142125
14.142125 20.006003 11.832161

11.832161 20.003716 10.141851

10.141851 20.004574 7.5592897 (2.3.4)
7.5592897 20.005717 8.425d-15

8.425d-15 40000.000
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The last subdiagonal element is now negligible.

Example 2.3 has shown that, in one case at least, TQR will take two sweeps to get the deflated T6.
Examination of the eigenvalues of the leading principal submatrices of 7 ) obtained by first QR sweep
with a = X6 reveals that the first QR sweep does no more than destroy the closeness of the eigenvalues of
T6 's leading principal submatrices, (see table 23.2 in Appendix A).

Example 2.4: ( successful deflation in an interesting case )

The matrix T in this example is the well known second difference matrix. The data are the original
ones.

-2 1
1 -2 1

1-21
1 -2 1

1 -2

The eigenvalues of this matrix are:

Xl=-2-'3, X2=-3, X3=-2, X4=-1, X5=-2+-3.

The shift is X3 =-2. The matrix T5 after one QR sweep is:

-2.0000000 1A142136
1A142136 -2.0000000 0.70710678

S= 0.70710678 -2.0000000 1.2247449
1.2247449 -2.0000000 0.000000

0.0000000 -2.00000000

One can verify that X3 is also an eigenvalue of the first and the third leading principal submatrices of
T5. This example shows that even if the shift is an eigenvalue of some of the leading principal sub-
matrices, nevertheless QR deflates T in one sweep.

2.4 Spectral properties of a symmetric tridiagonal matrix T

We give here several results that we need later. They are applications of Cauchy's Interlace
Theorem, see [ Cauchy, vol. 2 ].

Theorem 2.1: If T is unreduced then

(1) the eigenvalues of T are distinct;
(2) the eigenvalues of T's consecutive leading principal submatrices interlace with each other.

For proof, see [ Parlett, sec. 7-7, sec. 7-10], (Cao, chap. 2 ].

Definition 2.2: spread( T) = (T) - ( T

Theorem 2.2: If T is unreduced, then the subdiagonal element Ok satisfies the following inequality:

if n>2, I j3k I < spread(T)12, for k=2, ... , n;
if n=2, I Ok I < spread(T)/2.
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Definition 2.3: Let

=(): det( Tk - c'rk ); (2.4.1)

= y(a) I X-1(a). (2.4.2)

where T& is the k -th leading principal submatrix of T.

Since L is not monic it differs from the characteristic polynomial of Tk by a factor ( - 1)k.

Notation 2.1: We denote the eigenvalues of T by k. and label them so that

xl < 2 < .. <),.

Notation 2.2: Here we denote the bottom element of the normalized eigenvector of k. by o(0.

In our applications we need 1 / w, so we present our results in that form.

Lemma 2.2: If T is unreduced, then

= (2.4.3)

For proof, see [Parlett, chap.7].

Theorem 2.3: Suppose T is unreduced. Let us denote the eigenvalues of T. 1 by 4- so that

: t1 < 9t2 < ""< gn-I

then

i=1;91t -XI.t

> 'I- I XO- 1 k i l,n; (2.4.4)

i=n;

and
7 - xl

i=1;Al - k

1 hi-X X,! -i
S.-I i 1, n; (2.4.5)

( - Xi
X.i=n.

I _ -x t-R)

Proof: 2 -(X)' by (2.4.3).

Since

then= ( s-), Xa-i( ) =

then
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(X ) = - lHI (X,-)), x.-(kO ) = fH(,-Xfl.ju1.j,,i jml

And

l-I (X, -X )

. . =i (2.4.6)Ml? -1

j n=

n,
-I xj+ -- Xl

n - K 1,n; (2.4.7)

I Josl
j.1 x x - A) j i=n.

By Theorem 2.1
Xj < tLj < Xj,i~, j l... n-1.

Therefore each factor in the products in (2A.7) is positive and is bigger than one. That is to say the
formulae in (2.4.7) satisfy:

X- XI

/=1;

02 t i1.n

The reorganization of (2.4.7) reveals that

HI *tl I_ n 1___ 1

- X, -.2 )XN X. .- I x.
ri -I -) i n.

j=n.

• -1 . + -g X . - It X. - tj

Since X, < p., < Xj,, each factor in the above products is positive and each factor in the pro-
ducts on the right hand sides of equal signs is smaller than one. That is to say the above formulae
satisfy:
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1.,, - k

1 X,-i X-H,.
X-t< i- £ ln.

co? ~x,-xl.-,
in

3. Implementation of the QR transformation

This section develops the usual implementation of the QR algorithm applied to a symmetric tridiago-
nal matrix T. In the process, the important intermediate quantities are introduced along with the relations
among them.

Most of the material is standard, see [ Wilkinson, chap.8 ], [ Stewart, chap.7 I, [ Parlett, chap.8 I and
[Golub & Van Loan, chap.7 ]. However all the results are needed in the next section.

In the following discussion, we assume that all the tridiagonal matrices in question are unreduced
since otherwise the problem decouples. We also assume that the offdiagonal elements O3k ( 2 < k < n ) of T
are positive.

3.1 QR factorization of T - al
The desired QR decomposition can be carried out by pre-multiplying the tridiagonal matrix T - arl

by a sequence of plane rotation matrices Rk (2 k -< n ) defined as follows.

1

1

Rk = -sk Ck "- k-th row (3.1.1)

1

1

The duty of R (2! <k n ) is to annihilate the (k, k-1) position of the matrix on the way to an
upper triangular form. The formulae in step (k) are important for the analysis in section 4.

Let

a, -a 02

2 a2-_ .

not.a-e
It can be shown that at step (k) ( k < n )
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42 C2 ×

RkRk-..."R 2(T-a) = k X (3.1.2)

7ck Ck Pk+I

Pk+1 ak+r-aU

where
-=.(n +P )2 =ck-ICk k +s( Cak - )

Ck = 7tk- -4A Sk = 3k /4 (3.1.3)
4 = -Sk PkCk 1 + Ck( ak - ).

At step (n):

42 C2 X

RR.-I " R2(T-a)= = R. (3.1.4)

42 2 X~

(T-al) =Q -QR

IC,

with

Q = R R R...R.

We collect some direct conseuences of this decompition that are used later.

(I):

XI(o) = al - a = h9,

Xk(F) = 42"'" tknk, 25k 5n. (3.1.5)

(11): If T is unreduced, then

4k *0 , sk 0 0, 2:< k < n. (3.1.6)

(Ill): If T is unreduced, then

tk (a) = 0 if and only if yA (a) = 0, 1 <k <n. (3.1.7)

In words xk vanishes only at eigenvalues of Tk. So does ck+i by its definition.
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Lemma 3.1: The detailed structure of matrix Q is:

cIC 2 cl(-s2)c 3 cl(-s 2)(-s 3)c 4  C 1(-S2)...(-S.)

s2  c2c3  c2(-s 3)c4

S 3  C 3C4
Q = e* ... = S4 (3.1.8)

•c. -1c c. ,_-s,,)

SR C,

3.2 The QR transformation
In this subsection, we look at the inner loop of the QR transformation. The formulae

= Q'TQ =RQ + cr! in (2.2.1), R in (3.1.4) and Q =R2 . R' in (3.1.8) suggest a way to transform T
into T without forming Q.

First let us collect the essential quantities in the QR factorization derived above. If we define

$I = 0, c I=1, c1 
= a, -c

then the necessary elements of Rt, 2 5 k : n, can be generated by the following loop:

For k=2,...,n

Ck = k-l / 4
sk = A,/14L itk -SkkCk.1 +Ck( ak -ao).

Now, let us look at the diagonal and subdiagonal elements of matrix RQ + aI to find out the formu-
lae needed to compute the matrix elements of T.

By the formulae (3.1.4), (3.1.8), RQ + crl can be presented as follows:

C 2 -S2C 3  C 1(-S2)...(-S.

S2 C2 C3

53

+ a!.
4. r. " cmc c.-,(-s.)

Rl $S C,

If we denote the diagonal and subdiagonal elements of f by &k and j&t respectively, direct calculations

reveal that, for 2 5 k < n,

Ok-1 = 44,-1,

6k- = k Ck-1 + CkSk + 0,
= tkck-ck +Ck-ICkP Sk +S& 2 ( t -Y)+O, k =ck-1ck P +sk( ak - a) by (3.1.3),
= ck-174-1 + ck-lckOsk - C(ct&k -0) + a&, 74-1 = 4kck by (3.1.3),
= ck-1|1k-I - ck ( Ck ( Ot (I O - k Cks¢-1 ) + N
= ck-lk-I - ck k 

+  
- s.

C"= C, + CF.

=mmIBI lllllllll[ •I
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To organize the computation it is convenient to introduce a new quantity yk:

Definition 3.1:

TA: = 1 Ckc, k= 1,..., n.

The relation between yk and k-1 in terms of ck, sk, Ok and ak is

T = ck( ak -a) - st2 ,  2<k :n.

The above formula is derived as follows

k ACA= (-SAt C4-A.+CA( a -O))C, by definition of ntk in (3.1.3),
= -s ACk. Ck-. + CA ( - ),
= - sA s -1C-1 + CA2( cG - a), since ck[k = 7tA-ls from (3.1.3).

Linking all the above relations together, a compact algorithm emerges. We list this algorithm in
detail in (4.1.1.) and name it in this study by TQR. It is essentially the algorithm used in the well known
EISPACK collection of routines.

Example: In the following, the computed CA's, it's from TQR in Example 2.2 ( see section 2.3 ) are
listed. The resulting T is exhibited in (2.3.2). For comparison, the correct Cq's and xt's are also
listed. The resulting T is exhibited in (2.3.3).

computed correct

k Ck CA

1 +1.0000000000000d+00 +1.0000000000000d+00
2 -9.1287087206375d-01 -9.1287087206375d-01
3 +7.9096456588243d-04 +7.9096456594300 d-04

4 -2.3388300212821d-07 -2.3408762727625d-07
5 -8.0658942646820d-07 +5.9381746504385d-11
6 +4.2662106420853d-03 -1.1223688023196d-14

kk 74

I -3.3316666666667d+00 -3.3316666666667d+00
2 +2.7399802074030d--06 +2.7399802074446d-06
3 -2.7673419903274d-10 -2.7697632729029d-10
4 -8.18030999534324-10 +6.0232682537306d-14
5 +3.2249815432264d-06 -1.9058339689554d-17

6 -1.705630831781ld-02 -1.6080662764449d-17

3.3 Analysis of the QR transformation

Section 3.2 reveals the relations between the quantities of ck, sA, 7t and the matrix elements ct, Pk
in one step. This is inadequate if the analysis in terms of a is needed. In the next lemma, we present several
matrix-vector relations between all the intermediate quantities generated in the QR process and the matrix
T. It is these relations which will help us understand QR more deeply. These relations also tell us the
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structure of an eigenvector when a happens to be an eigenvalue of T.

Recall the partial reduction of T - al to upper triangular form as it appears at step (k). It is given in
(3.1.2).

The product of the plane rotation matrices R2 ..., Rk satisfies:

c2 -s 2c3  cl(-s2)...(-s)

S2 C2C3

S 3

R.R " = " C k-.(sk) . (3.3.1)

sCk I

The k-th column of (3.3.1) plays a crucial role in our analysis.

Definition 3.2: We denote by Yk the following vector in Rk.

cl(-s)" .. (-sk)C 2(-S 3)" .. (-sk )

Yk:= (3.3.2)
ck-.(-sk)

Ck

Definition 3.3: We denote by Yk the following vector in R'.

Yk

Yk: = R'2 ... R e = 0 (3.3.3)

Equating the k-.z row of (3.1.2), the following matrix-vector relations emerge.

Lemma 3.2: If T is a symmetric tridiagonal matrix of order n and a is an arbitrary real number, then
the quantities derived up to step k in TQR satisfy

Tyk - ytc = ckek + ckk3k+lek+i, k <n, (3.3.4)

II Tyk - Yt 112 = X2 + c2i2+1, k <n, (3.3.5)

(yk)'( TYt-a yt) = Ck = yk = (Y)tTYt - a, k S-n, (3.3.6)

Ty. - Ya = ige.. (3.3.7)

Proof: Equate the k-th row on each side of (3.1.2) and transpose to get

(T- alXR'. -- R )ek = (T-al )Y = xk ek +Ck k+lek+l.

Since (3.1.2) holds for k < n, (3.3.4) is true for k < n. (3.3.5), (3.3.6) are the direct results of (3.3.4).
(3.3.7) is a special case of (3.3.4) since 5., = 0 when k = n. N

We use notation i'k instead of qk since the former is slightly different from the k -th column qk of
matrix Q. When k = n, Y. = q..
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Lemma 3.2 used T and Yk. Equally important is the relation between Tk, the leading k xk submatrix
of T, and yk.

Corollary 1 of Lemma 3.2: For any real o,

ThYk - YkF = Itkek, I < k < n. (3.3.8)

(Yk)( ThYk - oYk= 1C Ck = Yk = (Yk)tTkyk - a, k < n. (3.3.9)

Proof: Taldng the first k rows of (3.3.4) and using the notation in (3.3.2), the formula in (3.3.8) is
obtained for k < n. When k = n it is the case in (3.3.7).

(3.3.9) is the direct results of (3.3.8) and (3.3.2). U

Corollary 2 of Lemma 3.2: If a is an eigenvalue of Tk, then

TkYk - ykC = 0, (3.3.10)

Tyk - YkO = Ck[ 3k+iek+i, iI Th, - Yka II = I CkI3 k+ I, (3.3.11)

a = (yk)'TkYk = (Y)Tyk. (3.3.12)

Direct consequences of (3.1.7), (3.3.8), (3.3.4), (3.3.5), (3.3.6) and (3.3.9).

Definition 3.4: We denote by tk the following vector in R .Ick
tk:= ck Pk+1 (3.3.13)

4. Properties of k, Ck and tk
The main results are (4.1.12) and the tight bounds on the derivatives of 7tk, ck and I I tk I I with respect

to a. See Theorems 4.1-4.5.

4.1 Basic properties.

We label the eigenvalues of Tk so that
;Lfk < Xjk) < ... < Xk k.

For easy reference, TQR and relations (3.1.7), (3.3.8), (3.3.2) are restated here.

TQR: (4.1.1)
S, 0, C1 = 1, XIc = cei- (T Ti x= c 1 1 1

for k=2,...,n do

4= (41kI
Sk = Ok_/4k
Ck = 74-1 / 4

= C( - t - s)

ak-i = Tf-k - Y + oa

. s.,, ='Y. + C.
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Relation (3.1.7): If T is unreduced, then
&t(a) =0 if and only if f= (T ) 1:<i:<k, 1:5k 5n. (4.1.2)

Ck(C)= 0 ifandonly if y= X1, 1 i -k-1, 2<k <5n. (4.1.3)

Relation (3.3.8): (Tt - ol )yk = let e(k), 1 <k < n. (4.1.4)

Relation (3.3.2):

cl(-s ) ... (-Sk)

y =, yY 1. (4.1.5)
ck-&(-Sk)

CA;

Some preliminary results:

Coroliary of Relation (3.3.8): When a= - {t), then Yt in (4.1.4) is its eigenvector for Tk.

Notation 4.1: We denote the bottom element of the normalized eigenvector of k (k) by (o, k,

i=1,2, ..., k, k = 1 .... n.

Corollary of Relation (3.3.2): When y =

(o- = Ck = Ck( 4 ) ) ( 0 i-1,2 ....k, k=1,2, ..., n. (4.1.6)

This is the direct consequence of (4.1.5) and (4.1.3).

We now discuss the smoothness of nk (a), ck (o), forcoe (a e ,).

Lemma 4.1: If T is unreduced and ck, sk, & are the functions computed by TQR ( see (4.1.1)), then
ck, sk, 7t, IItt II are real analytic on R.

Proof: It may be verified that _ 2 te~

-2 = det2[ Tk - Ulk ]/det[ (Tk- 1 - ok) 2 + e-

Therefore x 2 is a rational function of order 2k/(2k -2) with no poles on the real axis. Therefore it
and _ =(i2 - +J32) t2 are analytic on R for k = 2, ..., n. Since 4k >0, Ittk 11 >0 it follows that
Ck, st and IIt II are also analytic on R. Note that 42--_o as C-y _o

We want to show that 42 is a weighted harmonic mean of the( ) -k.

Premultiply both sides of (4.1.4) by ( Tt - f 4 )ri' to find

Y- = (Tt -,a <t )-le k), for c A.. (4.1.7)

A consequence of the spectral factorization is

k 2

Since YkYk = 1 by (4.1.5), (4.1.7) yields

I = (ep)), ( Tt - otk )-2ek k. (4.1.9)

Combine (4.1.8) and (4.1.9) to find

2= * ( )2, for (*Xi(k). (4.1.10)0
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Applying Lemma 4.1, a fundamental relation between Xk, Ck and their derivatives with respect to a
is obtained. f (q) = df (q)/da.

Lemma 4.2: For all real a

1t C; - Ck = 1. (4.1.11)

Proof: Differentiate (4.1.4)

Ak + ( Tk -alk) Y; x; fek~'

Multiply by (yt )' and recall the definition of yk in (4.1.5)

-(A )'Yk + (Yk)(Tk-ak)y = ck X;.

TheresultfolIowssince(yk )'Yk = I and(yk )'(Tk - al) = ik(t) by (4.1.4). U

Recall that tk: = (7Ck,Ckk+1)'.

Corollary 1 of Lemma 4.2: For any real Y

I1tk II lit;t1 I sin /(tk,t;) I (4.1.12)

= -xt; I

= 1
Ak+1 I by Lemma 4.2

= 13k+1. U

Discussion:
Relation (4.1.12) tells us that lit; II will be huge if Iftt 11 1 sin (tk, tj) I is tiny and Ak+j is

moderate. In order to understand the behavior of IIt; II deeply, a detailed analysis has been made on the
behaviors of xk and ck, of which Il tk II consists.

4.2 Properties of &t

In this subsection we investigate the be,3vior of -x, 2 k < n forae (c E oo c).

Corollary 2 of Lemma 4.2:
t7 t )= 1 1

X; 1 , l i k. (4.2.1)

Proof: Since ic ( 4kf) ) 0 by (4.1.2), relation (4. 1.11) at k-(k) becomes ck )4 k) ) x;( X,) ) - - 1. Since
c( ,4 kl) )= qk *0 by (4.1.6), (4.2.1) is obtained. U

Corollary 3 of Lemma 4.2: For any eigenvalue ),(k) of T '

lXk( C) = X(;,.k))(ay(k ) Y()Yk,.(k)).

Proof: Rewrite (4.1.A) as

( -T&- + c-h )y,( k ) = eO &(Xi(k) = 0.

Premultiply by yt( a) to get

Xk ( c t) )= -(( - ) )yk(C)yk( .

and then apply Corollary 2 of Lemma 4.2.
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Corollary 4 of Lemma 4.2:
= , 1<i <k. (4.2.2)

Proof: Differentiate (4.1.11): itt ck - ck t = 0. Seta= .,then rk =0by (4.1.2) andck =(oi A *0
by (4.1.6). U

We now turn to the behaviour of 7k for all other values of a.

Lemma 4.3:

nk %; < 0, for o k.(). (4.2.3)

Proof: Differentiate both sides of (4.1.10)

1 7k
-Tk = for )(4.2.4)

Differentiate right hand side of (4.2.4)
k (0,3 ( k_ )4" (4.2.5)

Differentiate left hand side of (4.2.4)
1- 3(

I + Cj )2. (4.2.6)

Therefore for 0 * k(k)

_ _L = 3 k 0 ) ,2 = )
s  3 , ( 4 k)-)4 k3 2 by (4.2.5) and (4.2.6)

k ()2 k 23 A ) 3 1( '2 using (4.1.10)

k k (k -23 f€ik )2- t2

k (,
- ( (~~~1 R Ok_ )2] using (4.2.4)

0 0. by Cauchy-Schwarz Inequality.

Moreover equality holds if and only if the following two vectors

01,k (tk~k  
)Y

z2 = ( (X l k)_ )2, _,_(- _) 2

are proportional. That is to say:

or

XL) .... k)

That contradicts the conclusion of Theorem 2.1 in section 2.4. Therefore
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L-n;(0) > 0, for a*X.,k)

Recall from (4.1.2) that xk (a) * 0 for a * .Therefore

- Ir i > 0, for a' k .

Corollary of Lemma 4.3:

it * 0, for a*)k) (4.2.7)

Lemma 4.3 shows that the algebraic function 7rk (a') is like the characteristic polynomial of T, in that
it vanishes at the eigenvalues of Tt. Moreover it is alternatingly concave upward and downward in the
intervals bounded by the eigenvalues of Tt.

The next result is a direct corollary of the proceeding lemmas and Theorem 2.3 in section 2.4. We
illustrate it in Fig. 4.1 which shows that it; attains its extreme values at the X.¢k), i = 1, .... k.

V./

/ .j i'4

Theorem 4.1: The derivative of the function ic (a') computed by TQR satisfies

- < )4 k-~) %4 )< [ )(,?) )]2 < (4.2.8a)

k~k) k(,k k(k) _< C X;( k.(k) ]"1

[g; ;(X?) ]2 < kk- .kT)),(-1)-)(kI i 1, k , (4.2.8b)

xk < [ t( X?) )]2 < XIm(4.2.8c)

and

I€( ? i X; ()L],k 1, .... r-

I it;(a') 1 < max[ i xj() 4 k)) , 1,1n I c [k) i, i = I . k ;

. .. .. ......... .I ( I f Ik ) 0
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Proof: By (4.2.7): zk * 0 for a * )(4 k). Apply Corollary 4 of Lemma 4.2

X= 0 for C--k(k)

Thus on each [ X(, lI for i = 1, ..., k-I, i has its only stationary points at the ends. For the
intervals ( - -, ), ) I and ( *k), -) the stationary points are Xp k) and X(.k. Therefore

I It(ay) I < maxC I ic;(Xl)) 1, 1 n;( ) I I, for i = I ... , k-1.
Use (42.1) to find that

7 (ki~ ) )  
- for i=1, ... , k,

Apply the bounds for I / o2 in Theorem 2.3 on Tk, the formulae in (4.2.8a), (4.2.8b) and (4.2.8c)
are revealed. U

We now give a pointwise bound on x; that reveals the role of the distance of a from the spectrum of
Tk and from the spectrum of Tk._. Some preliminary results are restated for easy reference.

(A) = (4..t + p2)112 see definition in (4.1.1)

(B) Ck = -1 see definition in (4.1.1)

(C) 5 , =- see definition in (4.1.1)
k2

(D) Ck = - _ derivative of (B)

(E) Rk C; - cklt; = 1 for any real a ( from (4.1.11))
(F) (Tk - l ) yk = nk ekl

k
)  for any real ar ( from (4.1.4))

Definition4.1: glk: = p*(a) = m IXi(k)-oaI, k=1,2 ... , n.
1 5i ! k

(G) < k2  for a* )

Proof of (G): (F)'(F) yields

(yk Tk - a!l, )2 y, = C2k.

Then
i = ma (a - k) )2 by Definition 4.1,

k. ( ( T a -,, )2)

< (iy )'( T, - a/Ik )2y,, yk cannot be an eigenvector since a ki k )
2.

We now present one of our key technical lemmas.

Lemma 4.4: For any real a,

itk(a) I X; I I Nt, I a = (4.2.9a)

ik(a0) I X; I < I 7tk I a * (4.2.9b)
gk _- i4 t < s 2 1t, I + (4-.(o- + 5 2 )1'2  (4.2.10)

Proof of (4.2.9a,b): When a = 4kj( ) then ntk = 0 by (4.1.2), g, = 0 by definition and (4.2.9a) holds. Now
suppose that a Premultiply (F) by ( T - aFlk )-It& -

',

Y = (Tk -a,, )-' er ) .  
(4.2.11)

Differentiate (4.2.11),
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Y; Xk - Yk X; = 2ek2 = (T - a )- (k). (4.2.12)

Differentiate YkYk = Ito obtain y'yY = 0. Premultiply (4.2.12) by yk, getting

1 .. 2 k = (Y )(Tk -lk )-2 ek(kI since y~y; = 0
- ( Y ) ( T aT -J) 1 / , by (4.2.11).

Thus

-Y = (yTk)'(-alt)-'yk X,

and

I7C;1 = (yA T)(TF-oI )-Iy II irk I. (4.2.13)

Since a yk will not be an eigenvector. Therefore

I(yk)'(Tk-qYlk)-'yk I < max Iv'(Tk - aIk)-& vI

= II ( T - CF II1 _ 1

min I ; .( _o I t
I fi gk

Put this inequality into (4.2.13) and multiply by kt. to obtain (4.2.9b). n

Proof of (4.2.10): When a - k-1) then g-I =0 and (4.2.10) is immediate since k 0 and s,2 I nt I 0
by (3.1.6) and (4.1.2).

Now suppose a * .(k-1).
I;Ck + 1I = Ic; Xkl by (E)

2
= I i t Iby (D)

k2  I Xk-I I tSk IrktI i I by (4.2.9b)

_sr
2 I C& 1t& I

by(B)

Hence

I 7tck I < S 2 1 Ckt+k

Since a 3(-) ct * 0 by (4.1.3). Then the above inequality can be rearranged as

9k-I I; I < S2 1 Ik + W-1
= C I

= S&2 I &t I + p*-i by(B3)

I by (A)

2p2 9k 12
= s2 I c I + ( i7-2 + 21_- )11

ky-I< 2~ + (/_ + p 2 )12. b G

I!1 S k byl (G)l 0nlln I
n
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The geometric interpretation of inequality (4.2.9b) is illustrated in Fig. 4.1. Since the graph of ik is
concave downward or concave upward, we have

I I IcI lItr I
<E;l= C , for a*)eik).dk 9

The dk is defined on Fig. 4.1.

Theorem 4.2: For any real a

3 spread (T) (13 spread( Tk (l t(cy)l < rain( 1+ 21() ,y 2-(I+ gk-I(O) ) " (4.2.14)

Proof: Recall thedefinitionofk in(4.1.1): % = ck(Cat- ) - OkS -ck-1. Thus

I Nk I = I Ck (cak C) - OkSkCk-I I,

< O (,- a + I Ok I, since Ick 1I- for 2<k n

= I at - k¢+k) +k A )a I + I At 1, choose closest eigenvalue

:5 I c- _-¢k) I + p. + spread (TA)12, by Theorem2.2

< spread (Tk) + k4 + spread(Tk) /2, since ca e [r= , kXk)

= + 3spread(Tk)/2.

Now (4.2.9b) in Lemma 4.4 yields

Sk 3 spread ( Tk (4.2.15)Ilk 2

Next we use the definition of ick in a different way.

IIrk I < Ick I I k-CI + I13A 1,

-- I kI I - ),:k-1) + - _ I + I Ok I, choose closest eigenvalue;
I k)

< I Ck I( spread (Tk) + I.L_ ) + spread (T) / 2, since Xk-k1) E [)(k), k)].

So
s5 l h I < sk I ck I( spread(Tk) + Ipk- I) + sk spread(T) /2

- ( spread (Tk) + igk- ) 2 + spread (Tk) / 2 , since I S Ck I < 1/2.

= p /. 2 + spread (Tk). (4.2.16)

Next we bound the term ( -m + ) on the right hand side of (4.2.10).

+ p)1/2 < ( gk2_ + (spread (Tk)/2 ) )112 < _l+ spread(T)/2. (4.2.17)

Add (4.2.16) and (4.2.17) to get

3
s I Rk I + (p +p 2 )112 < -( _- + spread (TA)). (4.2.18)

Substitute (4.2.18) into (4.2.10) to find
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,i 3 spread(Tk) (4.2.19)i < -( 1+).(..9
2 5k-i

The combination of (4.2.15) and (4.2.19) yields (4.2.14). U

* Note that p* and p, cannot vanish simultaneously by Theorem 2.1 in section 2.4.

Theorem 4.2 shows that n;(a) can only be huge if a is very close to an eigenvalue of T and an
eigenvalue of Tk-1. For instance when I x; I 1 I e1 , (4.2.14) implies

5k 34 1k- < 3'1e
spread( Tk) 2 ( 1 - ) spread( Tk) 2 - 3 4e-'

4.3 Properties of ck+1 and sk,+

In this subsection we investigate the behavior of ck+1, sk+l, 1 < k < n-I as functions of the shift ar.
For easy reference, we collect the previous results that are needed.

• St+lCk+lI

(H) St = - k itN derivative of (C)

C+ ..k. = - 32+ ,,+ X;, derivative of (D)
4+1 kj+t&

(1) 7 7k < 0 for a * ),() (from (4.2.3))
(K) x;(;¢k) ) = I (from (4.2.1))

Lemm 4.5: For cye ¢) i = 1, ..... k,

c+, * 0. (4.3.1)

Proof:

3 ick
C,+i = + + ()7, by (1).

+1

However

; c)2 I 3 + i +I I IC;, by (J)

pk2+1

L 0. by (J) again. N
Lemm 4.6:

c () ) = 0, i 5 k. (4.3.2)

Proof: Use (1) and observe that 7c( (t) = 01 I Si k by Corollary 4 of Lemma 4.2 and
ic( X-) = 0, 1 ! i ! k by (4.1.2). U

Lemma 4.7: c; 1+ ( a) reaches its extremes at the ),() and then

c;+I ( )'() ) = ";( ) I 1 < i 5 k (4.3.3)
Pk+1 Pk+1 

03
aik

Proof: Since c; l E C'( - oo, oo), Lemma 4.5 and Lemma 4.6 show that c;.+, reaches its extrema at k.k)
for i= 1 .... k. Therefore

_ $ +i (_ ))
C;+ (k) ) - (it 2 + N )12 it(; (k) by (D) and (A)

mk + p 2 1 )112
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1 t( by (4.1.2) and (4.1.3)

I k by (K) U

Theorem 4.3: The derivative offunction ck+l(a) computed by TQR satisfies

-X(k) X(k-1) _ Xjk)

< x. I -_ < [ ) ] ( .< { Pk+.IC1(k(k)) j2

[ )) 1 (k) 2( < ) < lk1 i 1, k, (4.3.4b)

),(k) _ k,(k-l) kk- ) ' £
I _ Ik

< p[ ,C , (+ c 7+ ( k() ) ]2 <•x~) - Ik (4.3.4c)
~() 4 k)X(k) -1)

and

I C;., 1 Xk) I,6 -c Xfk);

c;,4 (C) ! 5 maxi C;,I (X+(Xk) I, ] C(, i= .... -1;

I c;.(X, ) I, ae [G k, cc).

Direct consequences of Lemma 4.7 and Theorem 2.3 in section 2.4.

Discussion:
Lemma 4.5 tells us that ck+1 is like the characteristic polynomial of Tk in that it vanishes at the

eigenvalues of Tk. Moreover it is alternatingly concave upward and concave downward in the intervals
divided by the eigenvalues of Tk. The direct result from this geometric property of ck+1 is that

•I ck+I I i I
I c., I = d 1  -C , for CF(k), (4.3.5)

as shown in the figure Fig. 4.2.
C,.,, ' CL , 3L )

7,

VVI

.)
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The inequality (4.3.5) can be changed into:

.t Ic;,, I < I Ck+ I < 1, for any real a.

However, this bound can be improved.

Lemma 4.8: For any real a,

ttI IC;+1 I < 1/2, (4.3.6)

gk Is;,, I < 1/2. (4.3.7)

Proof: When r = (k) then iik vanishes and the assertions are vacuously true. Now we suppose that

2
$k+1

k ck+lI = + 1 X;, by (D)

< - I ck I, using (4.2.9b)
k+l=s,+I I ck+, I by (1B)

< 1/2. since I Sk+lCk+ I 5 1/2

Similarly
S I S+lCk+l I

<1 I Sk+ I = k I i I, by (4 )

tk+lI $klk~

=kc?+ Is+ 1 I, by (B)
< 1/2. since I sk+lck+i I < 1/2 and I ck 1 I < 1. U

As before we need to complement the proceeding result with another that involves the eigenvalues of
Tk+l •

Lemma 4.9: For any real a

W+1I c;+, I < 2 (4.3.8)

Proof: When a = X(k+l) then jit+1 vanishes and the assertion is vacuously true. Now we suppose that
a * . As before

xk+lc;+, I = I I + 7Ek+lck+ I, by (E)
5 1 + 17[;+l I ck+ .I,

I nktI
< I + I ck+I. using (4.2.9b)

Ilk+1

Multiply each side by gk+1/ I 7 t+1 I to get

gk+l IC;+ I < + I Ck+I ntk+I I
< 1+ Ick+l I < 2, by (G). 0

The above lemmas are summarized into the following theorem.

Theorem 4.4: For any real a

ICm+ < min[ 1 2 (4.3.9)2 gk tk+l+
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From Theorem 4.1 and Theorem 4.3 we see that derivatives of xk, ck+ at x, t) can be huge if
I coik I is tiny or I Pk+1 I is tiny or I wis f3k+1 I is tiny.

4.4 Properties of tt

This subsection concentrates on tt = ( at(a) + c&(a) P1+ )'. Since tt; II ((C; )2 + (Ck pk+l )2 )1/2,
the results in sections 4.243 can be applied here to bound II tj II as the following theorems show.

Theorem 4.5: For any real a

p?11tj112 < [h1t + 3spread(Tk)]2 + spread2(T+). (4.4.1)

1, lItlI2 < _'[11_- + Spread(Tk)) 2 + -!spread2(Tk+). (4.4.2)

4 16

Proof: Use (4.2.15) and (4.3.8) to get

12 IX; 12 < [ ptk + -1 Spread (Tk) ]2 and g2 I C; < 4.

Therefore apply Theorem 2.2 to get (4.4.1).

Use (4.2.18), (4.2.10) and (4.3.6) to get

-i I IX; 12 < -42 r 1-I + spread( Tk ) ]2  and ;1_l IC; 12 < 4
4 4.

Apply Theorem 2.2 to get (4.4.2). U

Theorem 4.5 shows that when ca is far from the spectrum of T and Tk-x, IIt; II has modest magni-
tude even when the spectra of Tk and T.-. have elements that are very close.

Remark 1: A similar result on II t II to Theorem 4.1 and Theorem 4.3 could be derived. However it is too
complicated since I x; I is related to the spectra of Tk, Tk.- and I c; I is related to the spectra of
Tk- 1 , T1 -2 and the magnitude of Ok . We present a simplified one.

Theorem 4.6: The norm of vector tj at eigenvalues of Tk satisfies

Xf(k-) (k1 ) [ l) (.. ik. ) ] 2 < )lt(f k))]2  ) l,=

Remark 2: It will be shown in section 5 that forward instability can appear at step k only if a is very close

to an eigenvalue of Tk.

5. TQR in Finite Precision Arithmetic

This section studies the relations among the computed quantities generated by TQR using finite pre-
cision arithmetic. A central objective is to explain the different phenomena we have observed in the exam-
pies presented in section 2.3. It turns out that the magnitude of the exact II t; II I sin (tk, t; ) I ( defined
in Corollary 1 of Lemma 4.2 ) governs the accuracy of the computed I tk II, and hence the accuracy of
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the

computed nk and ck. From a computational point of view, the role of II ti II I sin (tk, t; ) I can be
replaced by the magnitude of the exact I I tkI ( to be shown in (5.2.6)). The combination of analysis in
this section with Theorem 4.5 tells us that to have forward instability, it is necessary and sufficient that a
be simultaneously close to an eigenvalue of T, and an eigenvalue of T, 1 for some k < n.

3.1 Perturbed commutative law

We analyze TQR in finite precision arithmetic. If v is an output of TQR in exact arithmetic then let V
denote the corresponding output in finite precision arithmetic. In particular

Definition 5.1: We denote by Y, the following vector in Rk,

(-)""(-k )
F2(-3) ... (-Fk)

Yk:= (5.1.1)

It is not the case that Yk and 7tk are the output of TQR acting on a perturbed matrix with the same

shift a. Nevertheless Yt and xt do satisfy exactly a perturbed version of the fundamental relation

( T - /k )y, - n=&etk ), k=1 .... n. (5.1.2)

It turns out that

(Tk - a!, + Fk ) Yk = ,eV ), k =1, ... , n. (5.1.3)

where Fk is a tridiagonal matrix which is a small perturbation (component by component) of Tk. In fact

II Fk II < 5.6 spreade, spread = X.(Tk) - X(rt) (5.1.4)

provided that

2i(r,) < a < .X,(T,).

For verification of relations (5.1.3) and (5.1.4), see section 5.3.

The significance of (5.1.3) lies in the following perturbed commutative law:.

Lemma 5.1: For any real a,

Ck(a)3k+l k(a) - ir,(a)C-(a)0k+1 = ,+lykFkyk, 1 k l 5 n-l. (5.1.5)

Proof: For simplicity, we drop reference to a. Apply yk to both sides of (5.1.3)

y( t- a!,,k )YA + ytFk Yk = Xk Ck .

Use (5.1.2) and multiply by 1,+ to get (5.1.5). U

5.2 Forward instability of TQR

In section 2.3, we saw that TQR is forward unstable in Example 2.2 and forward stable in Example
2.4. The interesting case is Example 2.4. Since the shift a = -2 is an eigenvalue of T3 ( the 3x3 leading
principal submatrix of T5 ), the computed 7C3(-2) will be tiny. Obviously, it has lost all significant digits.
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However the computed r(-2) still preserves most of its significant digits, unlike Example 2.2 in which the
computed & (X6) loses all the significant digits for k = 4, 5 and 6, ( see table at the end of section 3.2 ). The
key difference between these two examples is the lengths of residual vectors tk (- 2), k = 1, ..., 5 in Exam-
ple 2.4 and the lengths of residual vectors tk (), k = 1, ..., 6 in Example 2.2 as shown in the following
table:

kI I tk (-2)I 11 1 t Q(6) 11

(Example 2.4) (Example 2.2)

1 1.00000000d+00 3.64965820d+00
2 1.000000OOd+00 3.16227602d-03
3 5.0000000d--01 9.3588227ld-07
4 5.00000000d-01 2.37408198d-10

5 1.30404754d-33 4.48883862d-14
6 1.60806628d-17

The lengths of II tk (-2) 11 never go under the magnitude of 0 ( spread 'F ) except at last step. This is
what we expected for deflation to occur. However the length of II tk (Wj) II has gone under the magnitude of
0 ( spread Te ) starting from step 4. The role of I I t II is shown by the following relation.

Corollary of Lemma 5.1: For any realca

IItk(a)lI IITk(o)II I sin 4t,Tk, ) = + I yFkYk I, k =. n-. (5.2.1)

where t (d) = ( Irk )Y

Proof: Use definitions of tk and Tk and observe that the left hand side of (5.1.5) is the cross-product of
these two vectors. Therefore the absolute value of the left hand side of (5.1.5) is equal to

Itk (a)ll Ilk(cr)ll sinz-(h,Tkt )I.

A variation of relation (5.2.1) is

Iltk(a)ll Iltk(a)-Tk()ll I sin .(tk,tk -T,) = 3k+i I y YFk I, k =1 ... , n-1. (5.2.2)

The combination of relation (5.2.2) with Corollary 1 of Lemma 4.2 that

Ilth1l IIt;I1 I sin- .(tt,t;) I = Ok.l (5.2.3)

yields the following important relation:

Theorem 5.1: For any real c and k = 1 ..., n-I

Iltt(a)-Tt(a)ll Isin.(tk,t-T t)I = IltIll Isin '(tk,t;)Ily Fky I. (5.2.4)

The direct consequences of Theorem 5.1 are:
II t (CF) - -f(a)l I > lit;l 11 1Sin ( t, t; )Il y'Fk yk I , k =1. .n-1, (5.2.5)

= k+I I Yk I (5.2.6)
litk i1

and

II)tk()-Tk(a)ll I sin fl( tk, tk -Tk k k n-1. (5.2.7)
S nyIFkyI I
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Now we come back to relation (5.2.1)
Since I Ak+1 ytFkyk 1/2 is the AREA of the triangular defined by tk,'Tk and tt -Tk. We shall describe

instability in terms of this geometric figure. There are three stages:

a) stability

iV - 4'V_

b) onset of instability

characterized by relative error in Iltk II such that

IItk -t'k II Itk -Tk 11_
lltk 11 IITk II

c) full instability

We can expect to lose all correct digits in the greater of I nr I and I Ck I Pk+1 when the triangle Ot,
Tk is equilateral:

1t k 11 = E1 1
I~t~I 2 - 11~l2 = 13*+i I ykFkyk 1.

Example 5.1:
The matrix is the same as that in Example 2.2 with the same shift. The lengths of the residual vectors

from TQR at step k are presented. For comparison, the correct lengths are also presented to show the rela-
tionship between the accuracy of IITk II and the magnitude of lItk II. It is not hard to observe that the pro-
duct of corresponding elements in first column and third column is less than spread e.

k II tk (W)I IITk(W 6 11 11 tk (W6 -Tk 0-6)II1

I 3.64965820d+00 3.64965820d+00 O.O0000000d +00
2 3.16227602d-03 3.16227602d-03 4.15999586d-17
3 9.35882271d-07 9.35882271d-07 2.42128268d-13
4 2.37408198d-10 8.51726993d-10 8.18091259d-10
5 4.48883862d-14 3.22498160d-06 3.22498160d--06
6 1.60806628d-17 1.70563083d-02 1.70563083d-02
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k I sin /-4( t,Tk )II sin. ( t, Tk - tk)I

I O.O0000d+O0 1.O0000d+O0

2 5.26836d-09 1.00000d+00
3 2.58686d-07 1.00000d+00

4 9.60509d-01 1.00000d+00
5 1.00000d+00 1.00000d+00
6 0.00000d+00 0.00000d+00

Example 5.2:

Another interesting example is one sweep of TQR on the following matrix:

T2 = tridiagonal 13 0 0--. 0 0 13].

The shift is its largest eigenvalue. We exhibit the IItk II, IITtlI, IITk-tk II, I sin Z(tk,lk)I and
I sin e(tk, T - tk ) I in the following table.



1 1.0030d+00 1.0030d+00 0.0000d+00 0.O0Od-- 1.00d+00

2 7.6923d-02 7.6923d-02 0.0000d+00 0.O0d+00 1.00d+00

3 5.9171d-03 5.917ld-03 3.OOOOd-14 0.00d+00 9.97d-01

4 4.5516d-04 4.5516d-04 3.7620d-13 0.00d+00 9.88d-01

5 3.5012d-05 3.5012d-05 4.8893d-12 1.38d-07 9.88d-01

6 2.6932d-06 2.6933d-06 6.3561d-11 2.33d-05 9.88d-01.

7 2.0717d-07 2.0730d-07 8.2629d-10 3.94d-03 9.88d-01

8 1.5936d-08 2.0536d-08 1.0742d-08 5.17d-01 9.88d-01

9 1.2259d-09 1.3984d-07 1.3964d-07 9.87d-01 9.88d-01

10 9.4298d-11 1.8154d-06 1.8154d-06 9.88d-01 9.88d-01

11. 7.2532d-12 2.3600d-05 2.3600d-05 9.88d-01 9.88d-01

12 5.5304d-13 3.0680d-04 3.0680d-04 9.97d-01 9.97d-01

13 5.5304d-13 3.9883d-03 3.9883d-03 7.67d-02 7.67d-02

14 7.2532d-12 5.1848d-02 5.1848d-02 4.50d-04 4.50d-04

15 9.4298d-11 6.7313d-01 6.7313d-01 2.66d-06 2.66d-06

16 1.2259d-09 7.2659d+00 7.2659d+00 1.67d-08 1.58d-08

17 1.5936d-08 1.2916d+01 1.2916d+01 0.00d+00 0.00d+00

18 2.0717d-07 1.2999d+01 1.2999d+01 0.00d+00 0.00d+00

19 2.6932d-06 1.3000d+01 1.3000d#-0 5.27d-09 5.27d-09

20 3.5012d-05 1.3000d+01 1.3000d+01 5.27d-09 0.00ds-0

21 4.5516d-04 1.3000d+01 1.3000d+01 0.00d+00 0.00d+00

22 5.9171d-03 1.3000d+01 1.3006d+01 0.00d4-00 0.00di+00

23 7.6920d-02 1.3000d+01 1.3077d+01 0.00d+00 0.00d+00

24 9.9704d-01 1.3000d+01 1.3997d+01 0.00d+00 0.00d+00
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The behavior of II t& II has gone through the three stages described before and the instability occurs
at step 8. However starting from step 13, the exact II tk II begins to increase and the computed II11 IIt still
keeps increasing. As a result, the angle between these two vectors has to shrink in order to satisfy the rela-
tion (5.2.1). Finally the triangular turns into the following form:

The interesting point of this example is that the computed IIT24 1 can be totally wrong even though
exact II t24 I1 is not tiny. However, the instability occurred when IIT8 II was about 0 (spread e).

Explanation of forward Instability

The Corollary of Lemma S.1, coupled with the behavior of y FYk, shows why instability must
occur in certain cases.

There are classes of tridiagonal matrices and shift a such that IlIt II can diminish with k to as small
a value as desired. Furthermore for small enough k the vectors yk and Yk are nearly identical. As k
increases the last components Ck and 4't may decrease to 0 (4), at which size 4- could lose all its
significant digits. Nevertheless Yk is an unit vector and yky = 1 ( i.e. > 0.8 ). At this stage ykFkyt is close
to the Rayleigh quotient of Fk for Yk, namely YLFkYk. For typical roundoff situations this Rayleigh quotient
will be of the same order as IIFk II. Recall from Corollary of Lemma 5.2 that lIft II < 5.6 spread(Tk)e
when ), (T) < 5 < ),(T).

CONCLUSION:

a) If Isin(tk,Tk -tk) 1 ! -3/2 and Iltll >4( 3 spread,) 1
1
2 then

IIyk - tt It Dk11 I ykFt t I 5.6 3t+1 spread F 2 1
IltkI Iltk 121 sinl(tk,Th-tk) I 16 5,+spread r <  2"

b) While I y FkYt I > I- spreadE, we have

ITt - tk II Pk1. I yvFyt. I Pk+1 spreadE

litk ll IltkII 2 I sin (t_,T -t ) I 4 lltk II2

Thus as II tk 112 drops below ( Pk+l spread e )/4 so must the relative error in Tk rise drastically above 1. This
is complete instability.

Note: we know of one special case ( see [ Demmel and Kahan] ) when all diagonal elements of T are zero
and a variation of TQR with shift as zero forces this condition on the diagonal elements of the transformed
T. In this case it turns out that ykFkYk is structurally zero for all k. Thus we can not prove that y 'Ftyk in
general remains above spread e/4 until complete instability ( YkYk = 0 (4E-)) sets in. However this is what
we observe.

5.3 Floating point version of TQR

In the following, we want to present a floating point version of the useful relation (3.3.8):

(Tk -C k)yk = itk)

Our model of error in floating point arithmetic is

fl(xoy) = (xoy)(l+e) (5.3.1)
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where o is one of-, -, xand/A fl(x oy )is the floating point result ofthe operation o ,and I e 1I5e
where e is the machine precision. Our analysis will be linearized using Wilkinson's notation ( see [ Wilkin-
son, pp 113 1 )

If I ej 1 :5 , i = 1, ..., n and ne E 0.01, then

+i (1ej 1 + 1.010 n F (5.3.2)

where 1 0 1 :5 1.

Lemma 5.2: Let ci, s, and ici denote the outputs of TQR in exact arithmetic with shift a. Let Ej, Fj and 7;.
denote the outputs of TQR infinite precision arithmetic with shift a. Then the computed outputs from
TQR with shift a satisfy exactly the following relation:

(Tk a alk + Fk )Yk = _kek" (5.3.3)

where

02471 -ay )s1, 03Z

Fk=PA

Ok Fk-I1A

Ok ekk-I (L- a )k A

and

I ekk 1 : 3.03e, I ektI 1 3.03e, I ek,l 1 2.02e, for k = 1, 2,..n.

Proof- We use mathematical induction.
Use definition of n, in (4.1.1) to find 7c1 = a,. - a. Hence by (5.3.1)

7r fl ('r1) fl( a, -aC) = a, -aC)( 1 +el. (5.3.4)

Use definition of 7ck in (4. 1. 1) and then (5.3.1), (5.3.2) to find

= 1k I+ etklkj(-Ft)+ (ak -C)X(I+ kk )Fk (5.3.5)

with I E-I 1 : 3.03e, I s-, 1 :5 3.03E because each quantity is involved in 3 atomic arithmetic
operations. Do the same thing for ck, sk'

Fk =fl(7-1 +k F =ft(Ok Ik)

Then

k Xk-1 Ok kkI+ e-)X(I+ eAk OkFk ( I+ Ek-1,k) (5.3.6)
with I Et-lk 1 : 2.02c.

Now we start to put things into matrix form. Consider the case k = 2. Multiplying (5.3A4) by g'2,

S71= (a, - a)( I + e~j )FYIF2 since 2" = 1. (5.3.7)

Use (5.3.6) and (5.3.5) for k = 2,
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D2 = 0 2( 1 + e 1 , 2 )c 2  -( a C - )( + 1, 1 ) 1YS'2; by (5.3.7)
= D2( I + E2,1 )F-t(-s2) + ( a2- a X 1+ )Z 2.

That is to say

fj c y(1+ ;2) (I +o )I 02( 1 +i2)- ] = [ "(j. (5.3.8)

The formulae (5.3.4) and (5.3.8) have shown that (5.3.3) is true for k = 1, 2. Now suppose the state-
ment is true for k = j. That is to say

(al - F )(l+ 1 .1 ) 32(1+E1.2)
042(1+ezi) ( 2- a )(I+E'2 ) D3(1+E2)

P3(1+e3.2)

('+(- z) •i • •y (- ) o

0
c2(- 3) . . (-)

x (5.3.9)
0

Multiply by (-Fj+,) on both sides of the above equation and use the results (5.3.6), (5.3.5) for

k = j+l, namely

K-5+1*= - P1j+( 1 + Eij+1 )Fj I.

1 /+ ( + j )E,(-2) + ( C+1 - c )( 1 + ej .

Now adjust the last row of (5.3.9) and add a new row to get

(a1--a)(lie, 1) f32(1+el,2)
02(1 PZ) (a2- )(1+F,.) 03(1+e2,)

1 j(l+ej-.ld)
Pj(l+Cjj-0 (aj--qXl+ejj) Pj+I(I+Cj. +)

0
F2(- 3) . ..

x

(t 5)

By induction, (5.3.3) holds for k < n. 0
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Corollary of Lemma 5.2 If
Z~m(,) < (T3 )

then

II F. II < 5.6 spread( T. ) F. (5.3.10)

where spread(T) = T - ( T).

Proof:
(1) by Lemma 5.1

I et I < 3.03e, I k_ I 1 3.03c. I.,+l <I 2.02e, for k=1,2,..., n;

(2) IOk I S spread(T. )12 for 25k 5n, by Theorem 2.2;
(3) I ct - o I < spread( T.) for 1 k S n, by condition given,

then, abbreviating spread ( T. ) by spread,

IIF II. = max[ I pk3 ht-_ I+I (q*-c)ekk I+I pk+lEktt+ I]
k

3 2< - spread 1.01e + 3 spread 1.Ole + - spread 1.Ole
2 2

= 32 + 3 + 1 ) 1.01 spread e
< 5.6 spread e.

In the same way,

II F, II < 5.6 spread e.

Hence

11 F. 112 = max,((F. )(F .)
< II (F. )'F II.
! 11 (F. )' I. 11 F. 1.1
= II F. Il II F II.
< ( 5.6 spread C )2. U

Note: When a is outside the interval [X(Tx),z,,(Tx)] we can bound term I ck-a l by
p. + spread (T.). Therefore for any real a

IIF. II < 5.6spread(T.)e + 3.03g.e. (5.3.11)

5.4 Forward stability
In this subsection, we will present a forward perturbation analysis. It turns out that the instability can

occur only if o is very close to an eigenvalue of Tk.

Definition 5.2:
Yk&: = Yk / llYk 11, it: = Rt / IIy II.

Recall that It&(G) = mini o- k.(k) I and spread (Ti) = X,,(Tk) - X,"(Tk).

Theorem 5.2 For any real y, if

t(a) > l2spread(T)e, k =1....n (5.4.1)

then
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ik - k I I
= I< -, k =1....n. (5.4.2)

Proof: Let Bt = (Tk - OIk )-Fk. Use (5.1.3) to find

Yk = (Tk -Ik +F )-ek7Ck,

= (I +Bk)-'(Tk -alk )- ek lk,

=(I + B )-I ykitk19k (5.4.3)

Premultiply by yk to get the main formula

Yk%; = Yk(I+BA )"lykikl/k. (5.4.4)

(1) we show

II Bk II 1/2, k = 1, 2, ... , n. (5.4.5)
IIFL 'l

II II < II (Tk - I4)- 11 IIFtII

3.03 e + 5.6spread(Tk) E
<94 by (5.3.11 )

< 1/2, by (5.4.1). U

(2) we show

yt( +BkY)-'yk > 0, k =1, 2,... n. (5.4.6)

y(I + Bt )-lyt= I + (-1)i ytBi

j=1

_>B 11-,l
i=l

IIB II
I - liBk II

1 - 2 IIBk II
1 - IIB 11

> 0, by (5.4.5).
(3) we show by induction that

Y l > 0. , i, > 0, k = 1, 2,... n. (5.4.7)

Note that yft, = I > 0 and xiri > 0 by (5.4.4) and (5.4.6) with k 1. Now suppose that

yYj > 0, ixyr, > 0, (5.4.8)

then

Nj Itj tj icj IIyj 11Cj/+i - -+ E) + (1+C) > 0. (5.4.9)
kj+ jl j+1 ki+1

Reference to (5.1. 1) shows that

= yJ+ij+i/lly ,+iII = 1 (yJ9II 1j% lYj llsj+1 + Cj+icj+i).
IIYj+111

Since s,+l > 0, !j+1 > 0 ( because OI+l > 0) then by (5.4.8) and (5.4.9) we see that

yj+lyj+l > 0.

Use (5.4.4) and (5.4.6) with k = j+1 to find x;+1ii+ > 0. By principle of induction, (5.4.7) is true
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fork = 1 ... , n.

(4) we show (5.4.2).
Take norms of (5.4.3) and use (5.4.7) to get

t/ik = 1I (1 + Bk )-yk II

Use standard perturbation theory and (5.4.5) to find:
II (l +B )-y II ( +Bk )- I I 1

1 - IIBk I1

Let yk = (I +Bt)w. Then 1< (1 + IIBk II ) Ilwil. Hence
I1 I I (I+ +Bk)-'yk 11.

1 + IIBk 11

Therefore

I+ IlBk 1 I CA 17k<I- IIBk 11

So

ez(t) = I ik I 74ll < 15 1

Conclusion

Forward instability was introduced as the occurrence of a computed transform T that was far from
the exact T. However our study concentrates attention on the forward stability of the rotation angles that
determine the similarity transformation. This is reasonable because wildly erroneous angles ensures both a
wrong f and also a vector Y. that is not a reasonable eigenvector approximation. However even rotation
angles with high relative accuracy cannot guarantee that each computed element of f has high relative
accuracy.

In section 5.4 we have shown that the computed xrk will not lose all the significant digits if the shift a
is nowhere close to any eigenvalues of T, j = 1. ..., k. That is equivalent to say that instability can only
happen at step k if a has been very close to some eigenvalue of Tj, j < k. However a being close to an
eigenvalue itself does not provoke forward instability. Example 2.4 illustrated this fact.

We point out some main results of this study.

(1) The effect on ck and sh of changes in the matrix elements cs- and Oi is transmitted through

a perturbation matrix F. By Theorem 5.1

IITt -tk I I sin L(tk,Tk - tk) I < 1lt;ll lyFkyk1.

and the amplification factor for the I y'FA 3y I is I I t; 11, the derivative with respect to a.
Instability requires that IIt; It be huge. There is no need to compute the gradient of Il tk I
with respect to all the variables a, and I3i.

(2) Formula (5.2.6) shows that

lltk -T 1 Pk+1 IykFkYk I
lltk I1 lltk 112

Thus whenever Iltk II gets too small, the relative error in lltk 11 can rise well above 1. In
other words small enough values of I ct I and I xr I cannot be calculated accurately in finite



- 36-

precision arithmetic. Actually when I1tt II is tiny, itk2 and ck+1 will be tiny. Therefore
current shift a has to be very close to an eigenvalue of Tk. Then by (4.3.3) and (4.1.6) we
see that I/I ck Pk+l I will be very close to the derivative of ck+1 at this a. Therefore tiny
IItk II signals huge derivative on ck,1. Using Theorem 4.4, we see that ltk and t k+l have to
be tiny simultaneously.
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